Applications of Substituted Arylacetaldehydes in the Total Synthesis of Mesembrane Alkaloids. Part 2.1 An Alternative Synthesis of (\pm)Sceletium Alkaloid A4

By Craig P. Forbes * and George L. Wenteler, Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa

The substituted arylacetaldehydes (\pm)-2-(3,4-dimethoxyphenyl) pent-4-enal (-1 c) is shown to serve as a precursor in the total synthesis of the mesembrane alkaloid (\pm)-sceletium alkaloid A_{4}.

Substituted arylacetaldehydes of the type (1) have been shown to be useful precursors in the total synthesis of seco-mesembrane alkaloids. ${ }^{1,2}$ It has also been shown that a judicious choice of substituents in the secoprecursor can lead to alkaloids of the mesembrane series. For example (\pm)-joubertinamine (2) was converted into (\pm)-mesembranone (3) by oxidative ring closure. ${ }^{3}$ The latter principle has been demonstrated during a projected synthesis of the seco-mesembrane alkaloid tortuosamine ${ }^{2,4}(4)$ and has resulted in an alternative synthesis of Sceletium alkaloid $\mathrm{A}_{4}(5) .{ }^{5}$ The key step in this synthetic pathway involves the formation of the 1 -methyl- $2,3,3 \mathrm{a}, 4,5-9 \mathrm{~b}$-hexahydro- 1 H -pyrrolo-$[3,2-c]$ quinoline ring system of (5) from the aminosubstituted diprotected 1,5-dioxo-system (6). This

(1)

(2).

(3)

(4)

(5)

(6)
transformation involves two dehydrative ring closures followed by dehydrogenation of the resulting dihydropyridine ${ }^{6}$ (Scheme).

Robinson annulation of (\pm)-2-(3,4-dimethoxyphenyl)-pent-4-enal (lc) (prepared by the mono-allylation of 3,4-dimethoxyphenylethanenitrile in tetrahydrofuran-
hexamethylphosphoramide at $-78{ }^{\circ} \mathrm{C}$, followed by reduction with di-isobutylaluminium hydride in dry toluene) with 6 -(5,5-dimethyl-1,3-dioxan-2-yl)hex-1-en3 -one (7) ${ }^{5.7}$ in refluxing aqueous ethanolic KOH gave

(7)

(9)
the monoprotected 1,5-dioxo-compound (8 a) in 35% overall yield. Lithium-liquid ammonia reduction of (8a) followed by quenching of the reaction with a large excess of anhydrous sodium benzoate before work-up produced the saturated ketone (8 b) in 90% yield. Protection of the oxo-function of (8 b) by acetal formation with 2,2 -dimethylpropane-1,3-diol to give the bis-acetal (8c) followed by cleavage of the allyl side-chain with osmium tetraoxide and sodium metaperiodate in etherwater ${ }^{8}$ gave the aldehyde (9) which was readily converted into the amine (6) by reductive amination with methylamine hydrochloride and sodium cyanoborohydride in dry methanol in $\mathbf{3 5 \%}$ overall yield. ${ }^{9,} \dagger$ Treat-
\dagger The alternative route in our original projected total synthesis of (\pm)-tortuosamine involving initial formation of the pyridine ring and subsequent elaboration of the allyl side-chain was unsuccessful. Construction of the pyridine ring by treatment of (8b) with an excess of hydroxylamine hydrochloride in refluxing aqueous ethanol to produce the allyl-substituted pyridine (10) proceeds smoothly in $\mathbf{4 5} \%$ yield. ${ }^{5,10}$ However, oxidative cleavage of the allyl side-chain, required for construction of the aminoalkyl substituent, failed. Both ozone ($\mathrm{MeOH}, \mathrm{Me}_{2} \mathrm{~S},-78{ }^{\circ} \mathrm{C}$) and osmium tetraoxide-sodium metaperiodate in ether-water produced complex mixtures containing little or none of the desired aldehyde. [The failure to produce the desired compound by ozonolysis is not entirely unexpected (see ref. 11).]

ment of（ 6 ）with a ten－fold excess of hydroxylamine hydro－ chloride in refluxing 88% aqueous ethanol ${ }^{5,10}$ for 36 h produced（土）－Sceletium alkaloid A_{4} in 54% yield．＊ The overall yield of (\pm)－Sceletium alkaloid A_{4} based on （土）－α－allyl－3，4－dimethoxyphenylethanal（1a）was 6% ．

EXPERIMENTAL

I．r．spectra were obtained on a Unicam SP 200 or Beck－ man 4250 spectrophotometer；${ }^{1} \mathrm{H}$ n．m．r．spectra were determined with a Varian HA 100 spectrometer with tetra－ methylsilane as internal reference．Mass spectra and accurate mass measurements were made on a Du Pont 21.492 B mass spectrometer．Melting points were obtained on a Kofler micro hot stage．Solvents were dried and puri－ fied by standard procedures．
（ \pm ）－α－Allyl－3，4－dimethoxyphenylethanenitrile．－Di－iso－ propylamine（ $13.7 \mathrm{~g}, 136 \mathrm{mmol}$ ）was added dropwise to butyl－lithium（ $7.6 \mathrm{~g}, 119 \mathrm{mmol}$ ）in hexane（ 60 ml ）at $0{ }^{\circ} \mathrm{C}$ under dry nitrogen．The resulting mixture of lithium di－ isopropylamide was cooled to $-78{ }^{\circ} \mathrm{C}$ ，diluted with tetra－ hydrofuran（THF）（ 100 ml ），and treated dropwise with hexamethylphosphoramide（ $20 \mathrm{~g}, 123 \mathrm{mmol}$ ）in THF（ 60 ml ）and then with 3，4－dimethoxyphenylethanenitrile（ 20 g ， $113 \mathrm{mmol})$ in THF（ 60 ml ）over 30 min ．The mixture was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and the resulting anion solution was treated with 1 －bromoprop－2－ene（ $14.4 \mathrm{~g}, 119 \mathrm{mmol}$ ）in THF（ 20 ml ）dropwise during 30 min ．The mixture was stirred for 30 min ，allowed to warm to room temperature， quenched with 5% aqueous $\mathrm{HCl}(200 \mathrm{ml})$ ，and extracted with chloroform（ $4 \times 50 \mathrm{ml}$ ）．The organic phase was washed with 5% aqueous NaHCO_{3} and saturated brine，dried $\left(\mathrm{MgSO}_{4}\right)$ ，and concentrated to an oil（30．1 g）．Chromato－ graphy over silica gel（ 900 g ）and elution with hexane－ether
＊This transformation proved to be sensitive to the amount of water present and would not，for example，proceed in 96% aqueous ethanol，conditions which have previously been successfully used for construction of the pyridine ring．${ }^{5,10}$
（4：1 v／v）produced starting material（ $5.3 \mathrm{~g}, 27 \%$ ）；$\alpha \alpha$－diallyl－ 3,4 －dimethoxyphenylethanenitrile $(200 \mathrm{mg}), \nu_{\max }$（neat） $3070,2940,2850,2270$ ， 1640 ， $1525,1475,1450$ ， 1260 ， $1035,1150,930$ ，and $770 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CCl}_{4}\right) 2.61(\mathrm{~d}, 4 \mathrm{H}, J 7$ $\left.\mathrm{Hz}, 2 \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.77$ and $3.78\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.98-$ 6.00 （ 2 overlapping ABM systems， $2 \mathrm{CH}=\mathrm{CH}_{2}$ ），and $6.82(\mathrm{~m}$ ， 3 H ，aromatic），$M^{+}(70 \mathrm{eV}) 257(9 \%)$ ；and（土）－α－allyl－3，4－ dimethoxyphenylethanenitrile（ $12.1 \mathrm{~g}, 49 \%$ ），m．p． $58-60{ }^{\circ} \mathrm{C}$ （from ether－hexane），$v_{\text {max．}}\left(\mathrm{CCl}_{4}\right) 3080,3000,2940,2830$ ， 2270 ， $1645,1535,1480$ ， 1455 ， 1432 ， 1280 ， 1162 ， 1150 ， 1040 ，and $938 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CCl}_{4}\right) 2.52\left(\mathrm{t}, 2 \mathrm{H}, J 7 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2} \mathrm{CH}=\right.$ CH_{2} ）， $3.65(\mathrm{t}, 1 \mathrm{H}, 7 \mathrm{~Hz}, \mathrm{ArCH}), 3.75$ and $3.78(2 \mathrm{~s}, 6 \mathrm{H}, 2$ $\left.\mathrm{OCH}_{3}\right), 4.97-6.05\left(3 \mathrm{H}, \mathrm{ABM}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ ，and $6.74(\mathrm{~s}, 3 \mathrm{H}$ ， aromatic），$M^{+}(70 \mathrm{eV}) 217(20 \%)$（Found：C， $71.9 ; \mathrm{H}$ ， $6.8 ; \mathrm{N}, 6.45 \%$ ． $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~N}$ requires $\mathrm{C}, 71.86 ; \mathrm{H}, 6.96$ ； N， 6.44% ）．
（士）－2－（3，4－Dimethoxyphenyl）penten－4－al（1c）．－（ $\pm)-\alpha-$ Allyl－3，4－dimethoxyphenylethanenitrile（ $3.04 \mathrm{~g}, 14 \mathrm{mmol}$ ） was dissolved in dry toluene（ 50 ml ）and cooled to $10{ }^{\circ} \mathrm{C}$ under dry nitrogen．The solution was treated dropwise with di－isobutylaluminium hydride（ 11 ml ； 1.43 M －solution in toluene； 1.1 mol equiv．）during 10 min ．The resulting mixture was stirred for 1 h ，treated with 5% aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(200 \mathrm{ml})$ ，and stirred for a further 2 h ．The mixture was extracted with ether（ $3 \times 70 \mathrm{ml}$ ）and the organic phase was washed with saturated brine $(1 \times 100 \mathrm{ml})$ ， dried $\left(\mathrm{MgSO}_{4}\right)$ ，and concentrated to produce the homogene－ ous（ \pm ）－aldehyde（1c）$(2.56 \mathrm{~g}, 85 \%), \nu_{\max }$（neat） 2580 ， $2565,1712,1520,1465,1255,1135$ ，and $1025 \mathrm{~cm}^{-1}$ ， $\delta\left(\mathrm{CCl}_{4}\right) 2.18-2.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.52$（ t with fine splitting by the aldehydic proton， $1 \mathrm{H}, J 7.0$ and $1.6 \mathrm{~Hz}, H \mathrm{C}-\mathrm{CHO}$ ）， $3.76\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.80-5.90\left(\mathrm{ABM}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ ， $6.55-6.85$（m， 3 H ，aromatic），and 9.52 （d， $1 \mathrm{H}, J 1.6 \mathrm{~Hz}$ ， CHO）．A small sample gave a semicarbazone，m．p．113－ $116{ }^{\circ} \mathrm{C}$（from light petroleum－acetone）（Found：C，60．6； $\mathrm{H}, 6.7 ; \mathrm{N}, 15.2 \%$ ． $\mathrm{C}_{14} \mathrm{~N}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 60.63 ; \mathrm{H}$ ， 6．90； $\mathrm{N}, 15.15 \%)$ ．
（ \pm ）－4－Allyl－4－（3，4－dimethoxyphenyl）－2－［2－（5，5－dimethyl－ 1，3－dioxan－2－yl）ethyl］cyclohex－2－en－1－one（8a）．－A mixture of the aldehyde（lc）（ $682 \mathrm{mg}, 3.1 \mathrm{mmol}$ ）and the vinyl ketone（7）（ $659 \mathrm{mg}, 3.1 \mathrm{mmol}$ ）in 96% aqueous ethanol $(60 \mathrm{ml})$ was added dropwise to a refluxing solution of KOH （ $400 \mathrm{mg}, 7.1 \mathrm{mmol}$ ）in 96% aqueous ethanol（ 60 ml ）during 10 min under nitrogen．The mixture was refluxed for a further 5 min and ethanol and water were removed azeo－ tropically with benzene under reduced pressure．The residue，chromatographed over alumina，（ 50 g ）and eluted with increasing volumes of ether in hexane gave the homo－ genous annulation product（8a）（ $1.13 \mathrm{~g}, 85 \%$ ），$v_{\text {max．}}$（neat） $3005,2900,2800,1670,1580,1250,1130,1030$ ，and $790 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CCl}_{4}\right) 0.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05-2.85(\mathrm{~m}, 13 \mathrm{H}$ ， including a CH_{3} singlet at $\delta 1.17$ ）， $3.18-3.73(\mathrm{~m}, 4 \mathrm{H}$ ， $\left.-\mathrm{CH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2}-\right), 3.80\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.36(\mathrm{t}, 1 \mathrm{H}$ ，acetal proton）， $4.90-5.85(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ABM}$ with overlapping singlet， $\mathrm{CH}=\mathrm{CH}_{2}$ and $\left.\mathrm{CH}=\mathrm{CR}-\mathrm{CO}\right)$ ，and $6.55-6.95(\mathrm{~m}, 3 \mathrm{H}$ ，aro－ matic）（Found：C，71．9；H，8．4\％；$M^{+}, 414.2414$ ． $\mathrm{C}_{25^{-}}$ $\mathrm{H}_{34} \mathrm{O}_{5}$ requires $\mathrm{C}, 72.44 ; \mathrm{H}, 8.27 \% ; M, 414.2406$ ）．
（土）－Birch－veduction Product（8b）．－The annulation pro－ duct（8a）（ $870 \mathrm{mg}, 2.1 \mathrm{mmol}$ ）in dry THF（ 25 ml ）was added dropwise to liquid ammonia（ 380 ml ；freshly distilled from sodium）containing lithium（ $145 \mathrm{mg}, 21 \mathrm{mmol}, 10 \mathrm{~mol}$ equiv．）．The mixture was stirred for 3 h and treated with dry sodium benzoate（ 4 g ）．The resulting bright yellow solution was stirred for 5 min and treated with ammonium chloride（ 1 g ）．The colourless solution so formed was evaporated under a stream of nitrogen and the residue was partitioned between ether（ 100 ml ）and water（ 50 ml ）． The layers were separated and the aqueous phase was re－ extracted with ether（ 25 ml ）．The combined organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to produce the oxo－acetal（ 8 b ）（ $790 \mathrm{mg}, 90 \%$ ），$\nu_{\text {max．}}$（neat） 2940,1708 ， 1588 ， 1523 ， 1479 ， 1260,1138 ， 1112,1025 ，and $920 \mathrm{~cm}^{-1}$ ， $\delta\left(\mathrm{CCl}_{4}\right) * 0.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.05-2.85$ $(\mathrm{m}, 13 \mathrm{H}), 3.20-3.72$（distorted AB q， $4 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CMe}_{2}-$ $\mathrm{CH}_{2} \mathrm{O}^{-}$），3．72－3．89（2 d， $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$ ）， 4.30 （distorted t ， 1 H ，acetal），4．72－5．68（two overlapping ABM systems， 3 $\mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$ ），and $6.65-7.00(\mathrm{~m}, 3 \mathrm{H}$ ，aromatic）（Found：C， $71.95 ; \mathrm{H}, 8.65 \% ; M^{+}, 416.2564 . \quad \mathrm{C}_{25} \mathrm{H}_{36} \mathrm{O}_{5}$ requires C ， 72.09 ；H， 8.71% ；$M, 416.2563$ ）．
（ \pm ）－4－Allyl－4－（3，4－dimethoxyphenyl）－2－［2－（5，5－dimethyl－ 1，3－dioxan－2－yl）ethyl］cyclohexan－1－one 2，2－Dimethyltrime－ thylene Acetal（8c）．－The oxo－acetal（8b）（ $700 \mathrm{mg}, 1.68$ mmol ）was dissolved in dry toluene（ 250 ml ），treated with 2，2－dimethylpropane－1，3－diol（ $182 \mathrm{mg}, 1.75 \mathrm{mmol}$ ）and toluene－p－sulphonic acid（ $33 \mathrm{mg}, 0.175 \mathrm{mmol}, 0.1 \mathrm{~mol}$ equiv．），and refluxed for 18 h ．Further catalyst（ 0.1 mol equiv．）was added after 5 h ．The condensed solvent was continuously passed through a thimble containing powdered calcium hydride．The solution was cooled，washed with 5% aqueous sodium hydrogencarbonate（ 50 ml ），dried （ MgSO_{4} ），and concentrated to produce the crude bis－acetal （8c）$(830 \mathrm{mg}, 98 \%)$ ．Chromatography over neutral grade III alumina with ether gave the pure bis－acetal（ 700 mg ， 82% ）as an oil；$\nu_{\text {max．}}$（neat） $2930,1585,1520,1468,1250$ ， 1018 ，and $1021 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{Cll}_{4}\right) * 0.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16$ （s， $3 \mathrm{H}, \mathrm{CH}_{3}$ ）， $1.00-2.70(\mathrm{~m}, 13 \mathrm{H}), 3.10-3.70(\mathrm{~m}, 8 \mathrm{H}, 2$ $\left.-\mathrm{OCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{O}-\right), 3.79$ and $3.81\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right)$ ， 4．20－4．37（m，l H，acetal），4．65－5．58（distorted ABM

[^0]system， $3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$ ），and 6.73 （s， 3 H ，aromatic）（Found： C， $71.25 ; \mathrm{H}, 9.65 \% ; M^{+}, 502.3337 . \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{6}$ requires C， $71.68 ; \mathrm{H}, 9.22 \%$ ；$M, 502.329$ 2）．
（：士）－4－（3，4－Dimethoxyphenyl）－2－［2－（5，5－dimethyl－1，3－ dıoxan－2－yl）ethyl］－4－formylmethylcyclohexan－1－one 2，2－Dime－ thyltrimethylene Acetal（9）．－The bis－acetal（8c）$(150 \mathrm{mg}$ ， 0.29 mmol ）was partitioned between ether（ 25 ml ）and water（ 25 ml ）and treated with osmium tetraoxide（ 20 mg ， $0.08 \mathrm{mmol}, 0.27 \mathrm{~mol}$ equiv．）．The mixture was vigorously stirred for 10 min and treated with sodium metaperiodate （ $3.2 \mathrm{~g}, 15 \mathrm{mmol}, 51 \mathrm{~mol}$ equiv．）in portions during 20 min ． The mixture was stirred for 18 h ，the ether layer was separated，and the aqueous phase was re－extracted with ether $(2 \times 15 \mathrm{ml})$ ．The combined ether phases were dried （ MgSO_{4} ）and concentrated to give the crude aldehyde（9） （ 176 mg ）．Chromatography over neutral grade III alumina with pentane－ethyl acetate（ $1: 1$ ） v / v produced the homo－ geneous aldehyde（ $127 \mathrm{mg}, 84 \%$ ）；$v_{\max }\left(\mathrm{CHCl}_{3}\right) \quad 2940$ ， $1712,1590,1523,1470,1256,1120$ ，and $1025 ; \delta\left(\mathrm{CCl}_{4}\right)$＊ $0.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.16\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.00-2.80(\mathrm{~m}, 13 \mathrm{H})$ ， $3.15-3.70\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}\right.$）， 3.79 and 3.81 （ 2 $\left.\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.20-4.40(\mathrm{~m}, 1 \mathrm{H}$ ，acetal）， $6.65-6.98(\mathrm{~m}$ ， 3 H ，aromatic），and $9.25-9.37(\mathrm{~m}, 1 \mathrm{H}$ ，aldehyde）（Found： C， 68.75 ；H， $8.7 \% ; M^{+}, 504.3092 . \mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{7}$ requires C， 69.02 ；H， 8.79% ；$M, 504.3085)$ ．

（土）－4－（3，4－Dimethoxyphenyl）－2－［2－（5，5－dimethyl－1，3－

 dioxan－2－yl）ethyl］－4－（2－methylaminoethyl）cyclohexan－1－one 2，2－Dimethyltrimethylene Acetal（6）．－The aldehyde（9） $(150 \mathrm{mg}, 0.29 \mathrm{mmol})$ and dry methylamine hydrochloride $(182 \mathrm{mg}, 2.69 \mathrm{mmol}, 9.2 \mathrm{~mol}$ equiv．）were dissolved in anhydrous methanol（ 25 ml ）and treated with sodium cyanoborohydride（ $23 \mathrm{mg}, 0.36 \mathrm{mmol} 1.24 \mathrm{~mol}$ equiv．）． The mixture was stirred at room temperature for 1 h ， treated with sodium carbonate（ 280 mg ），and refluxed for 30 min ．The mixture was cooled，filtered，and concentrated． The residue was chromatographed over neutral grade III alumina and eluted with increasing proportions of chloro－ form in ether to give the homogeneous amine（6）（ 77 mg ， $51 \%)$ ，$\nu_{\text {max．}}\left(\mathrm{CHCl}_{3}\right) 3080,3020,1590,1515,1465,1235$ ， 1090 ，and $995 \mathrm{~cm}^{-1} ; \delta\left(\mathrm{CCl}_{4}\right) * 0.67\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.15$ （s， $3 \mathrm{H}, \mathrm{CH}_{3}$ ）， $1.00-2.75\left(\mathrm{~m}, 18 \mathrm{H}\right.$ ，including an NCH_{3} singlet at $\delta 2.20$ ）， $3.04-3.70\left(\mathrm{~m}, 8 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CMe}_{2} \mathrm{CH}_{2} \mathrm{O}^{-}\right)$， 3.77 and $3.78\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.20-4.40(\mathrm{~m}, 1 \mathrm{H}$ ，acetal）， and $6.65-6.85(\mathrm{~m}, 3 \mathrm{H}$ ，aromatic）（Found：C，69．2；H， $9.4 ; \mathrm{N}, 2.7 \% ; M^{+}, 519.3512 . \quad \mathrm{C}_{30} \mathrm{H}_{99} \mathrm{NO}_{6}$ requires C ， $69.33 ; \mathrm{H}, 9.50 ; \mathrm{N}, 2.69 \% ; M, 519.3557$ ）．(\pm)－Sceletium Alkaloid A_{4}（5）．－The amine（6）$(60 \mathrm{mg}$ ， 0.11 mmol ）was dissolved in 88% aqueous ethanol（ 25 ml ）， treated with hydroxylamine hydrochloride（ $80 \mathrm{mg}, 1.1$ $\mathrm{mmol}, 10 \mathrm{~mol}$ equiv．），and refluxed for 36 h ．The mixture was basified with $\mathrm{KOH}(400 \mathrm{mg}$ ）in ethanol（ 4 ml ）．Ethanol and water were removed azeotropically under reduced pressure with benzene．The residue was filtered through neutral grade III alumina with ether to yield crucle（ \pm ）－ Sceletium alkaloid $\mathrm{A}_{4}(5)$（ $20 \mathrm{mg}, 54 \%$ ）as an oil which crystallised from ether．Recrystallisation from ethyl acetate produced prisms，m．p． $153-156{ }^{\circ} \mathrm{C}$（lit．，${ }^{12} 153.5-$ $154.5^{\circ} \mathrm{C}$ ），undepressed on admixture with an authentic specimen，identical（i．r．，${ }^{1} \mathrm{H}$ n．m．r．，t．l．c．，mass spectrum） with an authentic specimen（Found：m／e 325.1899. $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\left.M+1,325.1915\right)$ ．
（ \pm ）－6－Allyl－6－（3，4－dimethoxyphenyl）－5，6，7，8－tetraliydro－ quinoline（10）．－The oxo－acetal（8b）（ $500 \mathrm{mg}, 1.2 \mathrm{mmol}$ ）was dissolved in 96% aqueous ethanol（ 150 ml ），treated with hydroxylamine hydrochloride（ $417 \mathrm{mg} ; 6.0 \mathrm{mmol}, 5 \mathrm{~mol}$
equiv.) and the mixture was refluxed under nitrogen for 22 h . The solution was cooled, basified with $0.4 \mathrm{~m}-\mathrm{KOH}$ $(12 \mathrm{ml})$, and azeotroped to dryness under vacuum with benzene. The residue, chromatographed over neutral grade III alumina and eluted with $1: 1 \mathrm{v} / \mathrm{v}$ benzene-ethyl acetate, produced the allyl-substituted pyridine (10) (167 $\mathrm{mg}, 45 \%$), $\nu_{\max }$ (neat) $2930,1590,1525,1455,1250$, 1145 , and $1030 \mathrm{~cm}^{-1}, \delta\left(\mathrm{CCl}_{4}\right) 1.15-3.30\left(\mathrm{~m}, 8 \mathrm{H}, 4 \mathrm{CH}_{2}\right)$, $3.68\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OCH}_{3}\right), 4.70-5.75\left(\mathrm{ABM}, 3 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}\right)$, $6.55-6.73(\mathrm{~m}, 3 \mathrm{H}$, aromatic), 6.91 (dd, $1 \mathrm{H}, J 4.4$ and 4.8 $\mathrm{Hz}, H_{\mathrm{M}}$ of AMX), 7.30 (d with fine splitting, $1 \mathrm{H}, J 8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{A}}$ of AMX), and 8.20 (d with fine splitting, $1 \mathrm{H}, J 4.2 \mathrm{~Hz}, \mathrm{H}_{\mathrm{X}}$ of AMX) (Found: C, 77.6; H, 7.4; N, 4.4\%; $M^{+}, 309.1726$. $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2}$ requires $\mathrm{C}, 77.63 ; \mathrm{H}, 7.49 ; \mathrm{N}, 4.53 \% ; M$, 309.172 9).

The authors are grateful to the C.S.I.R., Pretoria, for financial assistance. We thank Dr. N. M. J. Vermeulen, Department of Biochemistry, University of Pretoria, for high-resolution mass spectra, and Messrs. D. Cromarty and D. Hack and Miss E. Smal for assistance.

REFERENCES

${ }^{1}$ Part 1, C. P. Forbes, W. J. Schoeman, H. F. Strauss, E. M. M. Venter, G. L. Wenteler, and A. Wiechers, J.C.S. Perkin I, 1980, 906.
${ }_{2}$ P. W. Jeffs, T. Capps, D. B. Johnson, J. M. Karle, N. H. Martin, and B. Rauckman, J. Org. Chem., 1974, 39, 2703.
${ }^{3} \mathrm{~K}$. Psotta and A. Wiechers, Tetrahedron, 1979, 35, 255 and references cited therein.
${ }^{4}$ F. O. Snyckers, F. Strelow, and A. Wiechers, Chem. Comm., 1971, 1467.
${ }^{5}$ C. P. Forbes, G. L. Wenteler, and A. Wiechers, Tetrahedron, 1978, 34, 487 and references cited therein.
${ }^{6}$ U. Eisner and J. Kuthan, Chem. Rev., 1972, 72, 1.
${ }^{7}$ C. P. Forbes, G. L. Wenteler, and A. Wiechers, J.C.S. Perkin I, 1977, 2353.
${ }^{8}$ R. Pappo, D. S. Allen, R. U. Lemieux, and W. S. Johnson, J. Org. Chem., 1956, 21, 478.
${ }^{9}$ R. F. Borch, M. D. Bernstein, and D. H. Durst, J. Amer. Chem. Soc., 1971, 93, 2897.
${ }_{10}$ R. V. Stevens, P. M. Lesko, and R. Lapalme, J. Org. Chem., 1975, 40, 3495.
${ }^{11}$ R. B. Woodward, M. P. Cava, W. D. Ollis, A. Hunger,
H. U. Daeniker, and K. Schenker, Tetrahedron, 1963, 19, 247.
${ }^{12}$ P. W. Jeffs, P. A. Luhan, A. T. McPhail, and N. H. Martin, Chem. Comm., 1971, 1466.

[^0]: ＊The ${ }^{1} \mathrm{H}$ n．m．r．spectrum of this compound consisted of two overlapping spectra due to the presence of a pair of diastereoiso－ meric racemates．

